ML-Based PID Auto-Tuning

Paper

Machine Learning PID Parameter Optimization

Oct 2025 - Nov 2025

ML-Based PID Auto-Tuning
The Problem

Manual PID tuning takes 2+ hours per robot and requires expert knowledge. Classical methods (Cohen-Coon, CHR) are suboptimal.

The Solution

ML model (MLP: 3→128→64→32→3) trained on 1,000 robot configurations optimized via Nelder-Mead method. Predicts Kp, Ki, Kd from mass, damping coefficient, and inertia in <0.2ms.

Key Innovation:

  • <0.2ms inference time
  • 100% success rate across 1,000 test cases
  • Statistical validation (p<1e-10, Cohen's d=5.66-6.62)
  • Noise robustness (tested 0-20% noise)
  • Dimensionally correct physics model
  • Comprehensive baseline comparisons
Results

78.1% improvement vs adaptive baseline, 90.4% vs Cohen-Coon, 51.7% vs CHR. 100% success rate (1,000/1,000 test cases). Prediction time: 0.179±0.013ms

└─ Visualization results: https://github.com/ilyasidk/ml-pid-optimization/tree/main/results

└─ Improvement distribution, noise robustness, and comparison charts available

└─ Statistical analysis with bootstrap CI and multiple effect sizes

Tech Stack

Backend

  • ├─Python

AI & Integrations

  • ├─Neural Networks (MLP)
  • ├─TensorFlow/PyTorch
  • ├─Nelder-Mead Optimization

Infrastructure

  • ├─Custom Robot Simulation
  • ├─Statistical Analysis
  • ├─Matplotlib Visualization

You might also like: